scaling features to a range

Solutions on MaxInterview for scaling features to a range by the best coders in the world

showing results for - "scaling features to a range"
Kamil
11 May 2018
1# Scaling features to a range using MinMaxScaler
2
3X_train = np.array([[ 1., -1.,  2.],
4                    [ 2.,  0.,  0.],
5                    [ 0.,  1., -1.]])
6
7min_max_scaler = preprocessing.MinMaxScaler()
8X_train_minmax = min_max_scaler.fit_transform(X_train)
9X_train_minmax
10# array([[0.5		, 0.		, 1.	    ],
11#        [1.		, 0.5		, 0.33333333],
12#        [0.		, 1.		, 0.		]])
13
14X_test = np.array([[-3., -1.,  4.]])
15X_test_minmax = min_max_scaler.transform(X_test)
16X_test_minmax
17# array([[-1.5		,	0.		, 	1.66666667]])
18
19min_max_scaler.scale_
20# array([0.5       , 0.5       , 0.33...])
21
22min_max_scaler.min_
23# array([0.       , 0.5       , 0.33...])
Moises
05 Aug 2017
1# Scaling features to a range using MaxAbsScaler
2
3X_train = np.array([[ 1., -1.,  2.],
4                    [ 2.,  0.,  0.],
5                    [ 0.,  1., -1.]])
6
7max_abs_scaler = preprocessing.MaxAbsScaler()
8X_train_maxabs = max_abs_scaler.fit_transform(X_train)
9X_train_maxabs
10# array([[ 0.5, -1.,  1. ],
11#        [ 1. ,  0. ,  0. ],
12#        [ 0. ,  1. , -0.5]])
13X_test = np.array([[ -3., -1.,  4.]])
14X_test_maxabs = max_abs_scaler.transform(X_test)
15X_test_maxabs
16# array([[-1.5, -1. ,  2. ]])
17max_abs_scaler.scale_
18# array([2.,  1.,  2.])
queries leading to this page
python normilize dataorder features by variance sklearnsklearn preprocessingsklearn normalize examplepython standardize datasklearn preprocessing normalize examplemost of the machine learning algorithms don 27t work well if your dataset has a very different scale of numerical attributes which sklearn classes you can use to make all the attributes to have the same scale 3fpython preprocessing inputnormalization technique sklearnsklearn pipeline scalingscikit learn standarizesklearn feature scalingsplitting using standard scaler sklearn 5cfrac 7b1 7d 7bn 7d 5csum 7bi 3d1 7d 5en 28y i 5chat 7by 7d i 29 5e2 sklearn pipeline preprocessingstandardize data python sklearnsklearn minmaxscaler centerfeature scaling data in pythonfrom sklearn preprocessing import scalerdata standardization pythonsklearn preprocessingpackagesklean logarithmis scalenormalize features pythonsklearn transform single examplescaling features to a rangepython scikit normalize datascaling variables pythonpython normalize datasklearn mean variance normalizationfrom sklearn import processingsklearn preprocessing pythonnormalization in scikit learn examplenormalizing data scikit learnmean normalize data pythonimport preprocessing from sklearnsklearnstandardization in pythonpreprocessing sklearnfrom sklearn import preprocessingimport sklearn preprocessing as preprocdata normalization pythoncerter and unit norm a dataframe using sklearnsklearn preprocessing meanmean normalization sklearnlog scaler sklearnsklearn normalize zero mean unit variancepython linear regression standizationscale data in pythonnormalize data using sklearn sklearn preprocessing normalize chartpreprocessing normalizesklearn log scalestandardise data pythonsklearn normalize datasetfeature scaling machine learningpython sklearn preprocessingstandardization pythondata transformation is a technique of representing values of different scale on a common scale select the range 2c in which the values will be transformed after min max scaling 2asklearn pipeline tutorial standardizationsklearn standardization modulefeature scaling sklearn for 1d arraynormalizng dataset sklearnstadarization pythonsatandardization pythonpython standardizationget the characteristics of scaler sklearnnormalize data in pythonshould i scale x and y sklearnhow to do normalization in sklearnnormalize data python sklearnfeatures mean scikitmean normalization sk learnpreprocessing scale 0 and 1how to do scaling in pythonsklearn scaling datafeature scaling sklearn scaling the data pythonwhich of the following api is used to scale a dataset to range 0 and 1pca sklearn mean centering pipelinehow to standardize data in pythonscale data pythonpython scale datahow to normalize data in pythonscikit learn data normalizationstandardize data pythonpandas sklearn standardization modulescikit learn normalize datanormalized data sklearnnormalizing data in pythonsklearn import preprocessing scalehow to standardize dataset in pythonhow to rescale dataset use sklearnfeature scaling numbernormalize data scikit learnhow to scale labels python sklearnpython sklearn scale datasklearn preprocessing zero meanstansdaridation pythonstandardization of data in python standardize pythonsklearn normalization standardizationnormalize sklearn examplehow to normalize data in python skelarntransform python sklearnsttandardize data pythonfeature scaling sklearn examplesklearn processing normalizesklearn transform in pythonimport preprocessingperform mean centering data using scikitstandardization classification sklearnscaler 1d arraysklearn import preprocessingpreprocessing normalize and scalingdata scaling and normalization pythonsklearn normalizescaling data in pythonscaling of data in pythonhow to normalize data in python sklearnsklearn scaler to test datascaling data pythonsklear ignore values over certain valuehow to normalize data using sklearnstandardization in scikit learnstandardization feature scalingscaling techniques sklearnstandardization in pythonhow to rescale dataset in certain range use sklearnscaler transform 1ddata preprocessing with sklearnmaximum value for simple feature scalingsklearn log transformsklearn normalize datadata standardization in python sklenarnormalize data pythonscaler transform 28x train 29 sklearnfeature scaling pythonimportsance of scaling data regressinscale data python pandas preprocessingstandardise scaling predictors sklearn pythonscale data sklearn mlsklearn preprocessing scale to convert labels to nd arraytypical transformation for preprocessing classstandartscaller fit transform manualsklearn processingnormalize data sklearnpython preprocessingscaler transform 28x train 29 sklearn normalize or standardizelist all categorical features transforms in sklearn preprocessingscale values in pythonstandardize dataset pythonpython scikit learn preprocessingsklearn preprocessing normalize and scalingscikit learn pipeline scale inputsklearn mean centering pipelinedoes scikit learn center the datadoes sklearn fit transform assume a distributionfeature scaling python exampleprocess standart scaller pythonzero mean normalization pythonpython standardization datapython preprocessing libraryscikit learn svm pre processscale the data in pythonpreprocessing variance scalerpreprocessing pyhtondifferent tools in scikit for data preprocessingminmax scalingmodel preprocessing using sklearnpython scalingper sample normalization scikit learnpreprocessing pythondata preprocessing using sklearnscale to unit variancescaler transform 28x train 29subtract mean divide by standard deviation sklearnpolynomial feature scalingsklearn log scalresklearn preprocessing e2 80 99s scale method to do mean subtractionscikit learn standardizefeature scaling in pythonscaling features to a range