import cv2
import numpy as np
img = cv2.imread('image.jpg')
def get_grayscale(image):
    return cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
def remove_noise(image):
    return cv2.medianBlur(image,5)
 
def thresholding(image):
    return cv2.threshold(image, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1]
def dilate(image):
    kernel = np.ones((5,5),np.uint8)
    return cv2.dilate(image, kernel, iterations = 1)
    
def erode(image):
    kernel = np.ones((5,5),np.uint8)
    return cv2.erode(image, kernel, iterations = 1)
def opening(image):
    kernel = np.ones((5,5),np.uint8)
    return cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel)
def canny(image):
    return cv2.Canny(image, 100, 200)
def deskew(image):
    coords = np.column_stack(np.where(image > 0))
    angle = cv2.minAreaRect(coords)[-1]
     if angle < -45:
        angle = -(90 + angle)
    else:
        angle = -angle
    (h, w) = image.shape[:2]
    center = (w // 2, h // 2)
    M = cv2.getRotationMatrix2D(center, angle, 1.0)
    rotated = cv2.warpAffine(image, M, (w, h), flags=cv2.INTER_CUBIC, borderMode=cv2.BORDER_REPLICATE)
    return rotated
def match_template(image, template):
    return cv2.matchTemplate(image, template, cv2.TM_CCOEFF_NORMED)