1df.loc['Total'] = pd.Series(df['MyColumn'].sum(), index = ['MyColumn'])
2print (df)
3 X MyColumn Y Z
40 A 84.0 13.0 69.0
51 B 76.0 77.0 127.0
62 C 28.0 69.0 16.0
73 D 28.0 28.0 31.0
84 E 19.0 20.0 85.0
95 F 84.0 193.0 70.0
10Total NaN 319.0 NaN NaN
11
1import pandas as pd
2
3data = {'Month': ['Jan ','Feb ','Mar ','Apr ','May ','Jun '],
4 'Bill Commission': [1500,2200,3500,1800,3000,2800],
5 'Maria Commission': [3200,4100,2500,3000,4700,3400],
6 'Jack Commission': [1700,3100,3300,2700,2400,3100]
7 }
8
9df = pd.DataFrame(data,columns=['Month','Bill Commission','Maria Commission','Jack Commission'])
10sum_column = df.sum(axis=0)
11print (sum_column)
12
1# select numeric columns and calculate the sums
2sums = df.select_dtypes(pd.np.number).sum().rename('total')
3
4# append sums to the data frame
5df.append(sums)
6# X MyColumn Y Z
7#0 A 84.0 13.0 69.0
8#1 B 76.0 77.0 127.0
9#2 C 28.0 69.0 16.0
10#3 D 28.0 28.0 31.0
11#4 E 19.0 20.0 85.0
12#5 F 84.0 193.0 70.0
13#total NaN 319.0 400.0 398.0
14
1df.at['Total', 'MyColumn'] = df['MyColumn'].sum()
2print (df)
3 X MyColumn Y Z
40 A 84.0 13.0 69.0
51 B 76.0 77.0 127.0
62 C 28.0 69.0 16.0
73 D 28.0 28.0 31.0
84 E 19.0 20.0 85.0
95 F 84.0 193.0 70.0
10Total NaN 319.0 NaN NaN
11
1import pandas as pd
2
3data = {'Month': ['Jan ','Feb ','Mar ','Apr ','May ','Jun '],
4 'Bill Commission': [1500,2200,3500,1800,3000,2800],
5 'Maria Commission': [3200,4100,2500,3000,4700,3400],
6 'Jack Commission': [1700,3100,3300,2700,2400,3100]
7 }
8
9df = pd.DataFrame(data,columns=['Month','Bill Commission','Maria Commission','Jack Commission'])
10print (df)
11