1# Use numpy.linalg.norm:
2import numpy as np
3
4a = np.array([1.0, 3.5, -6.3])
5b = np.array([4.5, 1.6, 1.2])
6
7dist = np.linalg.norm(a-b)
1# I hope to be of help and to have understood the request
2from math import sqrt # import square root from the math module
3# the x and y coordinates are the points on the Cartesian plane
4pointA = (x, y) # first point
5pointB = (x, y) # second point
6distance = calc_distance(pointA, pointB) # here your beautiful result
7def calc_distance(p1, p2): # simple function, I hope you are more comfortable
8 return sqrt((p1[0]-p2[0])**2+(p1[1]-p2[1])**2) # Pythagorean theorem
1dist = numpy.linalg.norm(a-b, ord=2) #ord=2 is default and means Euclidean distance, but I'm showing here that you can specify it
2