iptc text classification example

Solutions on MaxInterview for iptc text classification example by the best coders in the world

showing results for - "iptc text classification example"
Mahe
15 Apr 2020
1  CURL *curl;
2  CURLcode res;
3  curl = curl_easy_init();
4  if(curl) {
5    curl_easy_setopt(curl, CURLOPT_CUSTOMREQUEST, "POST");
6    curl_easy_setopt(curl, CURLOPT_URL, "https://api.meaningcloud.com/class-1.1?key=<your_key>&txt=<text>&model=<model>");
7    curl_easy_setopt(curl, CURLOPT_FOLLOWLOCATION, 1L);
8    curl_easy_setopt(curl, CURLOPT_DEFAULT_PROTOCOL, "https");
9    struct curl_slist *headers = NULL;
10    curl_easy_setopt(curl, CURLOPT_HTTPHEADER, headers);
11    res = curl_easy_perform(curl);
12  }
13  curl_easy_cleanup(curl);
Lisa
24 Jun 2016
1#! /usr/bin/env python
2
3# Created by MeaningCloud Support Team
4# Date: 26/02/18
5
6import sys
7import meaningcloud
8
9# @param model str - Name of the model to use. Example: "IAB_en" by default = "IPTC_en"
10model = 'IAB_en'
11
12# @param license_key - Your license key (found in the subscription section in https://www.meaningcloud.com/developer/)
13license_key = '<<<<< your license key >>>>>'
14
15# @param text - Text to use for different API calls
16text = 'London is a very nice city but I also love Madrid.'
17
18
19try:
20    # We are going to make a request to the Topics Extraction API
21    topics_response = meaningcloud.TopicsResponse(meaningcloud.TopicsRequest(license_key, txt=text, lang='en',
22                                                                             topicType='e').sendReq())
23
24    # If there are no errors in the request, we print the output
25    if topics_response.isSuccessful():
26        print("\nThe request to 'Topics Extraction' finished successfully!\n")
27
28        entities = topics_response.getEntities()
29        if entities:
30            print("\tEntities detected (" + str(len(entities)) + "):\n")
31            for entity in entities:
32                print("\t\t" + topics_response.getTopicForm(entity) + ' --> ' +
33                      topics_response.getTypeLastNode(topics_response.getOntoType(entity)) + "\n")
34
35        else:
36            print("\tNo entities detected!\n")
37    else:
38        if topics_response.getResponse() is None:
39            print("\nOh no! The request sent did not return a Json\n")
40        else:
41            print("\nOh no! There was the following error: " + topics_response.getStatusMsg() + "\n")
42
43    # CLASS API CALL
44    # class_response = meaningcloud.ClassResponse(
45    #   meaningcloud.ClassRequest(license_key, txt=text, model=model).sendReq())
46
47    # SENTIMENT API CALL
48    # sentiment_response = meaningcloud.SentimentResponse(
49    #   meaningcloud.SentimentRequest(license_key, lang='en', txt=text, txtf='plain').sendReq())
50
51    # GENERIC API CALL
52    # generic = meaningcloud.Request(url="url_of_specific_API",key=key)
53    # generic.addParam('parameter','value')
54    # generic_result = generic.sendRequest()
55    # generic_response = meaningcloud.Response(generic_result)
56
57    # We are going to make a request to the Language Identification API
58    lang_response = meaningcloud.LanguageResponse(meaningcloud.LanguageRequest(license_key, txt=text).sendReq())
59
60    # If there are no errors in the request, we will use the language detected to make a request to Sentiment and Topics
61    if lang_response.isSuccessful():
62        print("\nThe request to 'Language Identification' finished successfully!\n")
63        first_lang = lang_response.getFirstLanguage()
64        if first_lang:
65            language = lang_response.getLanguageCode(first_lang)
66            print("\tLanguage detected: " + lang_response.getLanguageName(first_lang) + ' (' + language + ")\n")
67        else:
68            print("\tNo language detected!\n")
69
70    # We are going to make a request to the Lemmatization, PoS and Parsing API
71    parser_response = meaningcloud.ParserResponse(
72        meaningcloud.ParserRequest(license_key, txt=text, lang='en').sendReq())
73
74    # If there are no errors in the request, print tokenization and lemmatization
75    if parser_response.isSuccessful():
76        print("\nThe request to 'Lemmatization, PoS and Parsing' finished successfully!\n")
77        lemmatization = parser_response.getLemmatization(True)
78        print("\tLemmatization and PoS Tagging:\n")
79        for token, analyses in lemmatization.items():
80            print("\t\tToken -->", token)
81            for analysis in analyses:
82                print("\t\t\tLemma -->", analysis['lemma'])
83                print("\t\t\tPoS Tag -->", analysis['pos'], "\n")
84
85
86except ValueError:
87    e = sys.exc_info()[0]
88    print("\nException: " + str(e))
89