// Program to print path from root node to destination node
// for N*N -1 puzzle algorithm using Branch and Bound
// The solution assumes that instance of puzzle is solvable
using namespace std;
// state space tree nodes
struct Node
{
// stores the parent node of the current node
// helps in tracing path when the answer is found
Node* parent;
// stores matrix
int mat[N][N];
// stores blank tile coordinates
int x, y;
// stores the number of misplaced tiles
int cost;
// stores the number of moves so far
int level;
};
// Function to print N x N matrix
int printMatrix(int mat[N][N])
{
for (int i = 0; i < N; i++)
{
for (int j = 0; j < N; j++)
printf("%d ", mat[i][j]);
printf("\n");
}
}
// Function to allocate a new node
Node* newNode(int mat[N][N], int x, int y, int newX,
int newY, int level, Node* parent)
{
Node* node = new Node;
// set pointer for path to root
node->parent = parent;
// copy data from parent node to current node
memcpy(node->mat, mat, sizeof node->mat);
// move tile by 1 position
swap(node->mat[x][y], node->mat[newX][newY]);
// set number of misplaced tiles
node->cost = INT_MAX;
// set number of moves so far
node->level = level;
// update new blank tile cordinates
node->x = newX;
node->y = newY;
return node;
}
// bottom, left, top, right
int row[] = { 1, 0, -1, 0 };
int col[] = { 0, -1, 0, 1 };
// Function to calculate the number of misplaced tiles
// ie. number of non-blank tiles not in their goal position
int calculateCost(int initial[N][N], int final[N][N])
{
int count = 0;
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
if (initial[i][j] && initial[i][j] != final[i][j])
count++;
return count;
}
// Function to check if (x, y) is a valid matrix cordinate
int isSafe(int x, int y)
{
return (x >= 0 && x < N && y >= 0 && y < N);
}
// print path from root node to destination node
void printPath(Node* root)
{
if (root == NULL)
return;
printPath(root->parent);
printMatrix(root->mat);
printf("\n");
}
// Comparison object to be used to order the heap
struct comp
{
bool operator()(const Node* lhs, const Node* rhs) const
{
return (lhs->cost + lhs->level) > (rhs->cost + rhs->level);
}
};
// Function to solve N*N - 1 puzzle algorithm using
// Branch and Bound. x and y are blank tile coordinates
// in initial state
void solve(int initial[N][N], int x, int y,
int final[N][N])
{
// Create a priority queue to store live nodes of
// search tree;
priority_queue<Node*, std::vector<Node*>, comp> pq;
// create a root node and calculate its cost
Node* root = newNode(initial, x, y, x, y, 0, NULL);
root->cost = calculateCost(initial, final);
// Add root to list of live nodes;
pq.push(root);
// Finds a live node with least cost,
// add its childrens to list of live nodes and
// finally deletes it from the list.
while (!pq.empty())
{
// Find a live node with least estimated cost
Node* min = pq.top();
// The found node is deleted from the list of
// live nodes
pq.pop();
// if min is an answer node
if (min->cost == 0)
{
// print the path from root to destination;
printPath(min);
return;
}
// do for each child of min
// max 4 children for a node
for (int i = 0; i < 4; i++)
{
if (isSafe(min->x + row[i], min->y + col[i]))
{
// create a child node and calculate
// its cost
Node* child = newNode(min->mat, min->x,
min->y, min->x + row[i],
min->y + col[i],
min->level + 1, min);
child->cost = calculateCost(child->mat, final);
// Add child to list of live nodes
pq.push(child);
}
}
}
}
// Driver code
int main()
{
// Initial configuration
// Value 0 is used for empty space
int initial[N][N] =
{
{1, 2, 3},
{5, 6, 0},
{7, 8, 4}
};
// Solvable Final configuration
// Value 0 is used for empty space
int final[N][N] =
{
{1, 2, 3},
{5, 8, 6},
{0, 7, 4}
};
// Blank tile coordinates in initial
// configuration
int x = 1, y = 2;
solve(initial, x, y, final);
return 0;
}